Existential neuroscience and autonoesis

I read a remarkable article by Marco Iacoboni in Social Neuroscience entitled “The Quiet Revolution in Existential Neuroscience”.  Instead of ‘quiet’ I wish it would be quite loud.  It makes for some dense reading but worth every nerve impulse to do so.  His main argument seems to be that instead of doing neuroscience based on the assumptions that the subjective and objective worlds are clearly delineated and that the subjective world is based upon representations which have been constructed through the accretion of analyzed elements (some pragmatic truth in that), our neuroscience should be based upon “the view of a human brain that needs a body to exist in a world of shared social norms in which meaning originates from being-in-the-world”.  What is important to our minds is not so much the analytic synthesis but the embodied context of experience.  Hey now, I can get behind that one.

Iacoboni marshals evidence for this view from a variety of research, especially studies into the frontoparietal mirror system.  (The frontal lobe has motoric functions that light up when we see someone doing something and the parietal lobe has perceptual and body schema functions that contribute to this mirroring).  Some studies show that mirroring emotions both incidentally and intentionally invokes not just the mirrored expressive actions but also the emotional processes themselves in the limbic system.  We mirror each other automatically on an almost continuous basis and that this leads to (I really like this next part) “a process according to which a certain intimacy is achieved . . . . . What is this intimacy if not the interdependence of both parties”.  What is emphasized here is not our separateness but our communal feelings. Mirroring helps us identify with and understand the other’s intention and emotional state.  This plays, of course, an important role in ‘mentalizing’ about others, what I call EC for Empathy Central and others label it ToM for Theory of Mind.

There is a lot more about this to be said but I want to explore another remarkable idea.  Iacoboni sees our minds interpreting much of our experience in context.  The same actions occur in many situations, so that to understand the other’s acts requires the inclusion of context in our deliberations.  (Be still, O my heart).  If I read him correctly, one major feature of any context is the degree of personal relevance; some situations are impersonal, i.e., without emotional engagement or involvement (think of doing things as a matter of course), and some are more personal, i.e., their emotional involvement leads to episodic memories (the experience is important enough to remember as an autobiographical episode of your life).  Experiences that are important to the self are autonoetic, as was discussed in my recent post 8/22/18, and autonoesis has many implications.

Cortical_midline_structures

DMPFC=dorsomedial prefrontal cortex MPC=medial parietal cortex. Illustration provided by Georg Northoff – Georg Northoff  Brain and self – a neurophilosophical account Child and Adolescent Psychiatry and Mental Health 2013, 7:28.

Most amazingly, Iacoboni identifies two structures relevant to the mirroring system, the dorsomedial prefrontal cortex and the medial parietal cortex, that light up when the experience is autonoetic (my interpretation).  For example, these two areas are silent during artificial laboratory tasks that have little ecological validity but they become more active when the task is social in a meaningful way.  Iacoboni says our ‘default state’ is to think socially and these two areas help in the ongoing social thinking needed to relate in a authentic, i.e., not rote or cant, manner.  To refer back to his earlier notion, these areas light up more when the situation’s import is based upon intimacy, i.e., engagement with the other, than when the situation is socially sterile.

Now, if you have followed my blog somewhat closely for more than a few months, you may already have a sense of how my dorsomedial prefrontal and medial parietal cortices are fired up.  Consider one of Iacoboni’s preliminary research finding that these areas light up when political aficionados discuss politics and grow dark when politically naïve or disinterested people do so.  I take this to mean that some of us feel politics is relevant to our lives and some do not.  Some do because they are cognitively engaged in issues and some do only because of the chameleon effect, i.e., they are responding by fitting in through social imitation and emotional contagion.  If you have done any phone canvassing for a candidate you might recall conversations based on positions, conversations based upon an emotional identification, and some when the person could care less.

Now consider a study posted about here on 4/18/18 that demonstrated that the closer you are, i.e., developing intimacy, with colleagues and friends, the more your neural responses to watching a movie are congruent with each other.  Also consider (and it may help to re-read my 8/22/18 post) the role of autonoesis in art. My empirical question is when someone ‘gets into’ a work of art, e.g., reading a novel that is hard to put down or seeing a movie that you love, do these areas indicative of autonoesis or personal engagement, i.e., dorsomedial prefrontal medial parietal cortices, light up? If you used an instrument to assess one’s aesthetic response such as the AESTHEMOS (see post 10/31/17), would this correlate with activity in these areas?  A very interesting study there wants to be done—oh to be a younger man in a research setting.  But go one step further with me.

Aristotle in talking about drama but it applies, I think, in some way to art forms in general, says that since we know the art is not ‘factual’, i.e., couldn’t be relevant to our ‘real’ life, to engage emotionally (and aesthetically, I would say) we must have a willing suspension of disbelief.  So I wonder if such a suspension allows what I am calling these autonoetic areas to fire up, and if we find art uninvolving, e.g., we could care less about the characters or the plot of a stupid movie, do these areas remain dark?  Oh my, that is seeking the deep aesthetic in life and mind.  Travel on.

 

Whose brain could we study?

I am going out on a lark here.  I just read an excellent review of research along with a proposed model of how our brains do empathy:  “A social cognitive neuroscience model of human empathy” by Jean Decety in another great collection of papers, Social Neuroscience: integrating Biological and Psychological Explanations of Social Behavior.  We are going to go into some complexities here but in truth, the reality is even more mind-boggling.  So Dr. Decety postulates 4 components to empathy:

  • ‘Shared neural representations’ which I understand to be the mirrored actions, especially emotional expressions, by which we resonate with one another.  (See posts 9/27/15, 7/29/15 & 7/31/15).
  • ‘Self-awareness’ which I take to be essential in knowing which resonant activity originated within us and which within the other.
  • ‘mental flexibiity’ by which Decety means the ability to set mentally one’s own perspective in the background and so enable the taking of another’s perspective.
  • ‘Emotional regulation’ which I understand to be quite basic to developing empathy and also higher intellectual skills. The development of emotional regulation is critical to our maintaining focus on our current mental set, intention, and task as well as to setting our personal feelings aside to address the concerns of others.

As Decety explains these 4 components, he reviews the neuroscience, including clinical findings, relevant to each.  For example, autistic people can generally engage in mimicry, i.e., mirroring, intentionally, but do not do so incidentally and this latter is necessary for mentalizing about another’s state of mind. It is one reason researchers like Ramachandran and Baron-Cohen (see my post 7/29/18 ) think autists suffer from a mirroring deficit.

The neuroanatomy supporting empathy is also profoundly complex.  Generally there are centers in the posterior brain, especially in the right hemisphere, that receive and integrate social information, and centers in the front of the brain that provide executive functions and guided responses to that information, again especially on the right side.  The front and back areas communicate with each other directly in some cases through long fasciculi, i.e., nerve fibers traversing the cortex, and also through their interconnections with lower centers like the hippocampus for memory and limbic system for emotional processing.

Lobes_of_the_brain

Exterior view of left hemisphere. Lobes are same on the right. Some structures are deeper within the larger folds.

Decety does an admirable job sorting through various findings to present relevant hypotheses about neural functioning.  For example,

  • The frontal polar cortex facilitates inhibiting our own perspective, which is the default one that we usually follow in our considerations, in order to take on another’s perspective. This area also helps evaluate our own responses and behaviors for their contextual fitness, i.e., do they fulfill the intent? Was the intent properly developed from a coherent adequately formulated context?
  • The prefrontal cortex interacting with the inferior parietal lobe (in the back and integrating information from many perceptual sources) and the insula (old cortex deep with the brain kind of in the middle) on the right side helps to differentiate actions from one’s own self from those of another.
  • The paracingulate sulcus (again old cortical structures deep in the brain) in the medial prefrontal cortex helps process social feedback, i.e., how do others view our actions?

And so forth.  I always find it amazing to consider that while these areas are performing these particular functions, they are also contributing to many others, e.g., attention and focus, memory input and output, etc.

Two ideas here struck me as particularly interesting.  First, damage from say a stroke to the right frontal lobe so important to emotional expression and social responding sometimes shows up in personal confabulation, i.e., the patient makes up stories about themselves seemingly unaware that he is doing so.  The second is that when faced with the personal distress of others, say due to their own circumstances or even to their assessment feedback of the original actor’s actions in some matter, our brains can respond either with empathic concern given their perspective (an optimal response) or with egoistic anxiety (retreating to one’s own narcissistic concerns).

Well, we have covered a good deal of ground here.  In my past life as a clinical psychologist I worked with many youth, including some with attachment and sexual aggression problems, who had deficits in some of these empathy ‘components’.  Each person’s deficits were unique in form and history and most retained some islands of empathic functioning.   Let me list some major areas:

  • Failure to resonate with another. The person may only resonate when the other mirrors them, but they seem unable to mirror or resonate with the other’s feelings.
  • Confusion as to the agent of thoughts and feelings. They think their own thoughts and feelings are also the other’s and they may fail to process accurately social feedback when the other tries to disagree or otherwise present their own perspective.
  • This leads to problems with perspective taking. They may assume that their perspective is shared by everyone.
  • Poorly developed emotional regulation presents difficulties for staying on mental task and intent as well as for responding with empathic concern for the other—instead they act upon their own egoistic anxiety and fail to engage socially in an adequate manner.

As I read and thought about these ideas I kept thinking of someone who seems to experience all of these deficits despite what otherwise may be intact intellectual capacity.  And I wondered if scientists could study that person’s neurological structure and functioning to learn from what seems to be an unusual case, someone whose empathy deficits appear global but without a history of neurological disease or injury or of developmental trauma.  I can think of only one person like this at the moment and that is why I want to ask our President, Mr. Trump, to donate his brain to science upon his death.  I know more could be discovered if he were to undergo evaluation while alive through experimental protocols, e.g., using fMRI, but I also know he is much too busy being president and running his businesses to do such a thing.  I am not talking about a simple post mortem autopsy such as the one that found a tumor impacting the amygdala of Charles Whitman, the Texas tower shooter (see my posts 9/3/15 & 12/26/17), but a detailed scientific examination of his brain structure, sort of like we wish would have happened with Einstein’s brain, which unfortunately was not done very rigorously.  I believe a knowledgeable neuroanatomist could assess the integrity of most of the relevant areas and some of their interconnections.

Now I have no way really of getting my message to our President and I am not on Twitter nor knowledgeable about it, but I wonder if some tweeting aficionados sent out some messages using #SaveTrump’sbrainforscience (if I understand the format correctly), what might transpire.  Travel on.